مقاله کامل اثر فوتوالكتريك از ديدگاه الكترومغناطيس كلاسيك

مقاله کامل اثر فوتوالكتريك از ديدگاه الكترومغناطيس كلاسيك

مقدمه
 
در اين نوشته هدف اصلي توجيه اثر متقابل فوتون و گراويتون با توجه به نظريه سي. پي. اچ است. نخستين برخورد ها با اثر فوتوالكتريك از ديدگاه الكترومغناطيس كلاسيك صورت گرفت كه توانايي توجيه آن را نداشت. سپس انيشتين اين پديده را با توجه به ديدگاه كوانتومي توجيه كرد. بنابراين نخست ميدانها و امواج الكترومغناطيسي كلاسيك را بطور فشرده بيان كرده، آنگاه با ذكر نارسايي آن به تشريح پديده فوتوالكتريك از ديدگاه انيشتين مي پردازم و سرانجام هر سه اثر فوتوالكتريك، اثر كامپتون و توليد و واپاشي زوج ماده – پاد ماده را با توجه به نظريه سي. پي. اچ. بررسي خواهم كرد. و سرانجام تلاش خواهد شد تا وحدت نيروهاي الكترومغناطيس و گرانش را نتيجه گيري كنيم.
 
 
نيروهاي الكتريكي و مغناطيسي
 
نيروهاي بين بارهاي الكتريكي را مي توان به دو نوع تقسيم كرد. دو بار نقطه اي ساكن يا متحرك به يكديگر نيروي الكتريكي وارد مي كنند كه از رابطه ي زير به دست مي آيد:
 
Fe=kqQ/r2
 
كه در آن
وقتي دو بار الكتريكي نسبت به ناظري در حركت باشند، علاوه بر نيروي الكتريكي، نيروي مغناطيسي نيز بر يكديگر وارد مي كنند.
از آنجاييكه بررسي نيروها با استفاده از مفاهيم ميدان عميق تر و ساده تر است، مي توان گفت كه هر بار الكتريكي در اطراف خود يك ميدان الكتريكي ايجاد مي كند كه شدت آن در فاصله r از آن، از رابطه ي زير به دست مي آيد:
 
E=kq/r2
 
حال اگر ذره ي باردار حركت كند، در اطراف آن علاوه بر ميدان الكتريكي، يك ميدان مغناطيسي نيز ايجاد مي شود كه وجود چنين ميدان مغناطيسي بصورت تجربي قابل اثبات است اگر ذره اي با بار الكتريكي q در يك ميدان مغناطيسي B و با سرعت vحركت كند، نيرويي بر آن وارد مي شود كه بر صفحه ي B, v عمود است كه از رابطه ي زير به دست مي آيد:
 
F=qvxB
 
از اين رو، بار q كه به فاصله ي rازQقرار دارد و با سرعتvحركت مي كند، يك ميدان مغناطيسي در محلQتوليد مي كند كه از رابطه ي زير به دست مي آيد :

 بطور خلاصه، در نقطه اي كه ميدان الكتريكي و مغناطيسي E , Bوجود دارد، نيروي الكترومغناطيسي وارد بر ذره باردار، با بار qكه با سرعت vحركت مي كند برابر است با

ميدانهاي الكترومغناطيسي
 
در يك ميدان الكتريكي موجود در فضا، به عنوان مثال در بين صفحات يك خازن باردار، انرژي الكتريكي وجود دارد. چگالي انرژي يا انرژي الكتريكي در واحد حجم از رابطه ي زير به دست مي آيد :
 
 
 
بطور مشابه چگالي انرژي مغناطيسي مثلاً انرژي مغناطيسي در ناحيه بين قطب هاي يك آهنربا برابر است با
 
 
 
امواج الكترومغناطيسي
 
بار الكتريكي ساكن ميدان الكتريكي مي آفريند. اما بار الكتريكي متحرك علاوه بر ميدان الكتريكي، ميدان مغناطيسي نيز ايجاد مي كند كه در قانون آمپر بخوبي نشان داده شده است. بنابراين در اطراف يك بار الكتريكي متحرك دو ميدان الكتريكي و مغناطيسي وجود دارد. يعني با تغيير ميدان الكتريكي، ميدان مغناطيسي توليد مي شود. همچنين ميدان مغناطيسي متغيير نيز نيز به نوبه خود، يك ميدان الكتريكي مي آفريند كه با قانون فاراده نشان داده مي شود. اين مطالب نشان مي دهد كه چگونه امواج الكترومغناطيسي توليد مي شوند. بنابراين يك بار الكتريكي در حال نوسان (شتابدار) در فضا امواج الكتريكي و مغناطيسي توليد مي كند. فركانس اين امواج برابر است با فركانس
بار الكتريكي توليد كننده ي امواج. اين ميدانها، يك ميدان الكترومغناطيسي تشكيل مي دهند كه پس از انتشار با سرعت نور c در فضا منتشر مي شود.

امواج الكترومغناطيسي كه در بالا توصيف شد بطور نظري در سال 1864 توسط معادلات كلارك ماكسول پيشگويي شد. علاوه بر آن ماكسول نشان داد كه سرعت انتشار اين امواج در خلاء از رابطه ي زير به دست مي آيد:

شدت موج الكترومغناطيسي
 شدت موج الكترومغناطيسي برابر است با مقدار انرژي كه از واحد سطح در واحد زمان مي گذرد كه از روابط زير به دست مي آيد:
امواج الكترومغناطيسي براي اولين بار توسط هانريش هرتز در سال 1887 در آزمايشگاه مشاهده شد. طيف امواج الكترومغناطيسي از امواج راديويي با طول موجهاي بلند تا امواج كوتاه گاما را شامل مي شود و نور معمولي بخش بسيار ناچيزي از آن را تشكيل مي دهد .

 
كشف اثر فوتوالكتريك
 
هرتز در جريان آزمايشهايي كه براي تاييد پيشگويي هاي نظري ماكسول در مورد امواج الكترومغناطيسي انجام مي داد، اثر فوتوالكتريك را نيز كشف كرد. بدين معني كه هرگاه نور بر فلزات بتابد، سبب صدور الكترون از سطح فلز مي شود. وقتي كه فيزيكدانان به تكرار اين آزمايش پرداختند، با كمال تعجب متوجه شدند كه شدت نور، تاثيري بر انرژي الكترونهاي صادر شده ندارد. اما تغيير طول طول موج نور بر انرژي الكترونها موثر است، مثلاً سرعتي كه الكترونها بر اثر نور آبي به دست مي آورند، بيشتر از سرعتي است كه بر اثر تابش نور زرد به دست مي آورند.
همچنين تعداد الكترونهايي كه در نور آبي با شدت كمتر از سطح فلز جدا مي شوند، كمتر از تعداد الكترونهايي است كه بر اثر نور زرد شديد صادر مي شوند. اما باز هم سرعت الكترونهايي كه بر اثر نور آبي صادر مي شوند، بيشتر از سرعت الكترونهايي است كه توسط نور زرد صادر مي شوند. علاوه بر آن نور قرمز، هر قدر هم كه شديد باشد، نمي تواند از سطح بعضي از فلزات الكترون جدا كند.
نارسايي الكترومغناطيس كلاسيك در توجيه اثر فوتوالكتريك
 
مي دانيم الكترونهاي ظرفيت در داخل فلز آزادي حركت دارند، اما به فلز مقيد هستند. براي جدا كردن آنها از سطح فلز بايستي انرژي به اندازه اي باشد كه بتواند بر اين انرژي مقيد فائق آيد. در صورتيكه اين انرژي كمتر از مقدار لازم باشد، نمي تواند الكترون را از سطح فلز جدا كند. طبق نظريه ي الكترومغناطيس كلاسيك، انرژي الكترومغناطيسي يك كميت پيوسته بود، لذا هر تابشي مي بايست در الكترون ذخيره و با انرژي قديمي كه الكترون داشت، جمع مي شد تا زمانيكه انرژي مورد نياز تامين گردد و الكترون از فلز جدا شود از طرف ديگر چون مقدار انرژي مقيد الكترونهاي داخل فلز هم ارز هستند، اگرانرژي لازم براي جدا شدن آنها به اندازه ي كافي مي رسيد، مي بايست با جدا شدن يك الكترون از سطح فلز، تعداد زيادي الكترون  آزاد شود همچنين با توجه به اينكه انرژي پيوسته است، مي بايست انرژي تابشي بين الكترونهاي آزاد توزيع مي شد تا هنگاميكه انرژي همه ي الكترونها به ميزان لازم نمي رسيد، نمي بايست انتظار جدا شدن الكتروني را داشته باشيم. به عبارت ديگر نمي بايست به محض تابش، شاهد جدا شدن الكترون از سطح فلز بود.
  
مكانيك كوانتومي
 
همزمان با اين مشكلات كه مكانيك كلاسيك با آن رو به رو بود، يك رويداد ديگر در شرف تكوين بود. در سال 1893 ويلهلم وين نظريه اي در باره ي توزيع انرژي تابش جسم سياه يعني مقدار انرژي كه در يك طول موج معين تابش مي كند وضع كرد. بر طبق اين نظريه فرمولي به دست آمد كه توزيع انرژي را در انتهاي بنفش با دقت توصيف مي كرد، اما در باره ي توزيع انرژي در انتهاي قرمز طيف صدق نمي كرد. از طرف ديگر لرد ريلي و جيمز جينز معادله اي به دست آوردند كه توزيع
انرژي را در انتهاي قرمز طيف بيان مي كرد ولي در انتهاي بنفش صدق نمي كرد. ماكس پلانك در باره ي اين مسئله به پژوهش پرداخت و متوجه شد كه به جاي منطبق ساختن معادلات با واقعيات، بايد مفهوم كاملاً جديدي مطرح كند. به اين ترتيب اولين قدم را ماكس پلانك در سال 1900 با معرفي مفهوم كوانتوم يا گسستگي انرژي برداشت. وي تنها زماني توانست پديده تابش جسم سياه را توصيف كند كه فرض كرد مبادله انرژي بين تابش و محيط با مقدارهاي گسسته يا كوانتيزه انجام مي شود. اين نظر پلانك باعث كشف هاي جديدي شد كه نتيجه آن ارائه راه حل هايي براي برجسته ترين مسئله هاي آن زمان بود.
 وي اعلام كرد انرژي كميتي گسسته است كه آن را كوانتوم انرژي ناميد و هر كوانتوم انرژي ضريبي از يك پايه انرژي است كه در رابطه ي زير صدق مي كند.
E = nhf
 N عدد صحيح است
 h يا ثابت پلانك
 
توجيه كوانتومي پديده فوتوالكتريك توسط انيشتين
 انيشتين در سال 1905 با استفاده از نظريه كوانتومي انرژي پديده فوتوالكتريك را توضيح داد. بنابر نظريه ي كوانتومي امواج الكترومغناطيسي كه به ظاهر پيوسته اند، كوانتومي مي باشند. اين كوانتومهاي انرژي را كه فوتون مي نامند، از رابطه ي پلانك تبعيت مي كنند. بنابر نظريه كوانتومي، يك باريكه ي نور با فركانسfشامل تعدادي فوتونهاي ذره گونه است كه هر يك داراي انرژيE=hfمي باشد. يك فوتون تنها مي تواند با يك الكترون در سطح فلز برهم كنش كند، اين فوتون نمي تواند انرژي خود را بين چندين الكترون تقسيم كند. چون فوتونها با سرعت نور حركت مي كنند، بر اساس نظريه نسبيت، بايد داراي جرم حالت سكون صفر باشند و تمام انرژي آنها جنبشي است. هنگاميكه ذره اي با جرم حالت سكون صفر از حركت باز مي ماند، موجوديت آن از بين مي رود و تنها زماني وجود دارد كه با سرعت نور حركت كند. از اين رو وقتي فوتوني با يك الكترون مقيد در سطح فلز برخورد مي كند و پس از آن ديگر با سرعت منحصر بفرد نور cحركت مي كند، تمام انرژيhfخود

فایل : 42 صفحه

فرمت : Word

29900 تومان – خرید
محصول مفیدی برای شما بود ؟ پس به اشتراک بگذارید

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

  • کاربر گرامی، در این وب سایت تا حد امکان سعی کرده ایم تمام مقالات را با نام پدیدآورندگان آن منتشر کنیم، لذا خواهشمندیم در صورتی که به هر دلیلی تمایلی به انتشار مقاله خود در ارتیکل فارسی را ندارید با ما در تماس باشید تا در اسرع وقت نسبت به پیگیری موضوع اقدام کنیم.

مقالات مرتبط